Основы фотографии #4.3

  1. Основы фотографии #1
  2. Основы фотографии #2.1
  3. Основы фотографии #2.2
  4. Основы фотографии #3
  5. Основы фотографии #4.1
  6. Основы фотографии #4.2

Раздел #2. Светочувствительный сенсор

В предыдущем, первом разделе я показал ход световых лучей в цифровом зеркальном фотоаппарате с подвижным зеркалом (см. рис. 3).

После того как Вы нажали на кнопку спуска затвора до упора, поднимаются зеркала, открывается затвор, оптическое изображение, созданное объективом, проецируется на светочувствительный сенсор – плоский прямоугольной формы электронно-оптический прибор. Его основная функция – преобразовывать энергию света в электрическую энергию.

Прежде, чем «окунуться» в устройство, принцип работы, виды и характеристики светочувствительного сенсора предлагаю разобраться, для чего это может понадобиться на практике.

Техническое качество изображения

Фотографию рассматривает человек. Согласно психологии восприятия любой человек бессознательно стремится увидеть на изображении то, что он привык видеть в окружающем его мире. Другими словами, зелёный закат покажется большинству людей нереалистичным. Он может привлечь внимание на первых порах, но наблюдать его постоянно вряд ли захочется, потому что желание не подкреплено повседневным опытом. Вы часто видите зелёный закат?

На восприятие изображения оказывают влияние культура и уровень психического развития конкретного человека. Но стороны восприятия, сильнее связанные к содержанием изображения, с его художественным качеством, в настоящей части «основ» я не рассматриваю. Она затрагивает техническую сторону восприятия.

Снимаемая сцена «превращается» в плоское двумерное цифровое изображение, последовательно проходя минимум два преобразования.

Сначала отражение световых лучей от объектов снимаемой сцены преобразовывается объективом в оптическое изображение: световые лучи модифицируются. Этому «преобразованию» посвящена вторая часть «основ». Для ясности дальнейшего изложения я предполагаю, что объектив справился со своей задачей наилучшим образом: не хуже, чем человеческий глаз.

Затем светочувствительный сенсор преобразовывает световые лучи в электрические импульсы (заряды). Какой орган в человеческом организме выполняет аналогичную трансформацию?

От того, как проходит преобразование световой энергии в электрическую (в некоторых случаях дополнительно электрическую энергию в числа), зависит соответствие цифрового изображения, сохраняемого в виде файла на карте памяти, оптическому изображению, сформированному объективом. Как оценить степень указанного соответствия?

Производители сенсоров для фотоаппаратов стремятся создать устройство, которое бы запечатлевало снимаемую сцену близкой к такой, какой её воспринимает человек. Вне зависимости от конструкции и принципа работы светочувствительного сенсора.

Как в случае с самолётом и птицей инженеры-конструкторы разрабатывают сенсоры, применяемые в современных цифровых камерах, по образу и подобию человеческому глазу. Критерии технического качества изображения следуют из возможностей зрительной системы человека. Её возможности я выберу в качества эталона.

Техническим качеством изображения назову меру соответствия двух изображений снимаемой сцены: первое сформировано зрительной системой здорового человека, второе – с помощью фотоаппарата, – определяемую по совокупности следующих критериев:

  • точность передачи и охват цветов;
  • способность различать цвета в тёмных, близких к чёрному цвету, и светлых, близких к белому цвету, областях снимаемой сцены;
  • плотность и характер распределения тонов, которыми представлена снимаемая сцена;
  • способность передавать детали;
  • уровень цветовых и тоновых искажений.

Приведу несколько пояснений.

Как я отмечал ранее, объектив влияет на техническое качество изображения. В основном, по первому, четвёртому и пятому критериям. Для выделения «зоны ответственности» светочувствительного сенсора, предполагаю в рамках настоящей статьи, что оптическое изображение, сформированное объективом, в достаточной мере удовлетворяет перечисленным критериям. Таким образом, я рассматриваю степень соответствия оптического изображения, сформированного объективом, цифровому изображению, сохранённому в виде файла на карте памяти, по пяти критериям.

Несмотря на то, что все названные критерии измеримы – могут быть оценены по какой-то числовой шкале – эти измерения относительны. Конкретная съёмочная ситуация определяет степень удовлетворения этим критериям. Также, критерии могут быть неравнозначны. Поэтому в разговоре о «высоком» или «низком» техническом качестве, следует уточнять как съёмочную ситуацию, так и то, в чём проявляется его «высота». Приведу пример.

Я снимаю пейзаж, на котором изображён морской закат (цвета переходят между собой «плавно»). Если итоговое изображение предназначено для печати в формате 30х40 см (примерно формат А3), то четвёртый критерий более важен, чем в случае, когда речь идёт об итоговом цифровом изображении с размерами 10х15 см, предназначенном для просмотра на экране компьютерного монитора (например, для портфолио на веб-сайте).

Уровень детализации (четвёртый критерий) для отпечатка в указанном формате должен быть в 2-4 раза больше, чем для отображения на экране современного монитора.

Если добавить к условиям цифровую печать на высококачественном плоттере (например, для корпоративного календаря или на выставку), то в «авангард» помимо четвёртого критерия выходят сразу первый, третий и пятый критерии.

Высококачественное печатающее устройство в руках опытного специалиста может превосходит по точности цветопередачи и цветовому охвату (первый критерий) и плавности тоновых переходов (третий критерий) среднестатистический монитор. Дополнительно, искажения на опечатке большего формата, если они присутствовали на исходном цифровом изображении, могут быть заметнее, чем на отпечатке меньшего формата.

Теперь, когда я обозначил роль светочувствительного сенсора в формировании цифрового изображения и раскрыл понятие «техническое качество изображения», перейду к управлению техническим качеством изображения. Другими словами, я постараюсь ответить на следующий вопрос. Как мне настроить фотоаппарат, чтобы передать с помощью цифрового изображения то, что я вижу глазами и так, как я вижу глазами?

Вначале опишу и проиллюстрирую устройство и принцип работы светочувствительного сенсора на примере наиболее распространённого вида – с массивом цветных фильтров – применяемого в современных фотоаппаратах. Как в зеркальных, так и в беззеркальных и компактных камерах. Затем обзорно затрону менее распространённые технологии.

Далее перейду к характеристикам светочувствительных сенсоров и их связи с критериями технического качества изображения.

Устройство и принцип работы светочувствительного сенсора

Представьте себе плитку шоколада. Стограммовая порция состоит из пятнадцати одинаковых элементов, расположенных в пять столбцов и три ряда. Светочувствительный сенсор – та же «плитка», где одинаковые элементы расположены в строки и столбцы. Сенсор состоит из значительно большего, чем в шоколадке, количества элементов. В настоящее время оно достигает 10 – 80 миллионов. Элемент светочувствительного сенсора называется сенселем (составное слово на англ. sensel – sensor element – «элемент сенсора»).

Каждый сенсель непосредственно реализует функцию сенсора – преобразовывает световую энергию в электрический заряд. Поднесу сенсель поближе к глазам:

Рис. 7. Схема сенселя, с установленным на входе фильтром синего цвета, и иллюстрация принципа его работы (вид сбоку). Фотоны, пропускаемые фильтром, скапливаются в «корзине» и порождают электрический заряд, которому ставится в соответствие электрическое напряжение на электродах. Напряжение прямо пропорционально количеству «уловленных» фотонов.

Упрощённая конструкция сенселя с видом сбоку показана на рис. 7. Сенсель можно представить в виде «накрытой» цветным фильтром «корзины», ко «дну» которой присоединено два электрода.

«Корзина» может «собирать» и «считать» фотоны – частицы, образующие световой поток. Фотоны обладают энергией. Поэтому, чем больше фотонов находится в «корзине», тем больше энергии она накапливает. Чем больше энергии накапливает «корзина», тем выше напряжение между двумя электродами. Пусть, условно, одному фотону соответствует напряжение равное 1-ому микровольту. Тогда, если в «корзине» находится 100 фотонов, то напряжение на электродах равно 100-ам микровольтам.

Цветной фильтр «пропускает» только те фотоны, которые соответствуют цвету фильтра. Например, если над «корзиной» установлен синий фильтр, то «зелёные», «красные» фотоны и фотоны любого другого «цвета» отразятся от поверхности фильтра, а «синие» фотоны попадут в «корзину». Подробнее о «цвете» фотонов и связи их свойств с передачей цвета на цифровом изображении я расскажу в седьмой части «основ».

Таким образом, каждый сенсель характеризуют три параметра: месторасположение на сенсоре (номер строки и номер столбца), напряжение на электродах и цвет фильтра.

Рассмотрю теперь сенсели издалека, в совокупности.

Оптическое изображение снимаемой сцены, которое создаёт объектив, является потоком фотонов. В момент, когда подняты зеркала и открыт затвор, поток проецируется на сенсор. Тем предметам снимаемой сцены, которые отразили в объектив меньше световых лучей, исходящих от источника, будут соответствовать менее плотные скопления фотонов в потоке. Поэтому в какие-то «корзины» попадёт больше фотонов, в какие-то – меньше.

Общее количество фотонов в потоке зависит от освещённости снимаемой сцены. Чем меньше интенсивность освещения (чем меньше фотонов испускает источник света), тем меньше фотонов, отразившись от объектов, попадёт в объектив и, соответственно, на сенсор.

Зачем считать фотоны? На что влияет величина напряжения на электродах каждого сенселя? Чтобы ответить на эти вопросы, покажу, как сенсели связаны с элементарными фрагментами цифрового изображения – пикселами. Рассмотрю левый верхний угол светочувствительного сенсора.

Рис. 8. Схематичный вид сверху на левый верхний угол светочувствительного сенсора. Цветные квадратики – массив цветовых фильтров. В любой группе-квадрате, состоящей из 4-ёх сенселей зелёный фильтр будут иметь 2-а сенселя, красный и синий – по 1-ому сенселю.

Чем больше напряжение на электродах сенселя, тем более светлым получится соответствующий сенселю элементарный фрагмент итогового цифрового изображения. Эту закономерность можно наблюдать воочию: чем выше интенсивность освещения снимаемой сцены, тем более светлой получается фотография (при неизменных параметрах экспозиции).

Однако, одному пикселу итогового цифрового изображения соответствует не один сенсель. Каждый пиксел рассчитывается по напряжениям нескольких соседних друг с другом сенселей. При этом учитывается цвет фильтров, установленных на каждый участвующий в расчёте сенсель. Расчёт может производится процессором фотоаппарата под управлением встроенной программы, либо программой для компьютера, которая оперирует специализированными файлами, создаваемыми фотоаппаратом. Что представляют из себя эти файлы, я расскажу далее.

Первый путь – «конвейер» – я опишу в третьем разделе, а второй путь, аналогичный по сути первому, относится к этапу обработки и выходит за рамки серии «Основы фотографии».

Порядок и набор возможных цветов строго определён и задаёт массив цветных фильтров (от англ. color filter array – CFA). В данном разделе речь идёт о массиве, придуманном Брюсом Байером (Bryce Bayer) в 80-ых годах. Массив цветных фильтров Байера построен по совокупности трёх принципов:

  1. Каждый фильтр может быть одного из трёх цветов: синим, красным или зелёным;
  2. На каждую группу из 4-ёх сенселей, образующих квадрат 2х2 сенселя, приходится два зелёных фильтра, один синий и один красный;
  3. Два одинаковых по цвету фильтра не стоят рядом по вертикали или по горизонтали.

Иллюстрация массива цветных фильтров, выполненного по схеме Байера, приведена на рис. 8. Построение «подсмотрено» у природы. Специальные клетки – колбочки – которые образуют сетчатку человеческого глаза восприимчивы к одному из трёх цветов: красному, зелёному или синему. Другие специальные клетки – палочки – восприимчивыми лишь к изумрудно зелёному цвету. Общая картина такова, что человеческий глаз значительно более чувствителен к зелёному цвету, чем к красному и синему.

Рис. 9. «Мозаики» из синих, зелёных и красных фильтров (вид на сенсор сверху).

Расположение фильтров может напоминать мозаику (см. рис. 9). Поэтому иногда псевдоизображения, полученные с помощью светочувствительных сенсоров с массивом цветных фильтров, называют мозаичными.

Существуют массивы, в которых применяется другое расположение фильтров и/или применяются фильтры других цветов. Однако принцип работы любого массива цветных фильтров един: «отсортировать» фотоны по «цвету» так, чтобы впоследствии получить цифровое изображение похожее на оптическое изображение, проецируемое объективом на светочувствительный сенсор. Почему «похожее»?

Как я отметил ранее, цвет пиксела на цифровом изображении формируется на основании параметров соответствующего сенселя и параметров «соседей» последнего. Процесс формирования называется интерполяцией (или процессом «демозаики»). Цвет пиксела вычисляется приближённо. Выполнение интерполяции необходимо для светочувствительного сенсора, где применяется массив цветных фильтров. Потому что каждый сенсель частично характеризует световой поток, попадающий на «вход» сенселя.

Интерполяция – это вычислительный процесс. Предварительно напряжения, соответствующие величине электрических зарядов, преобразуются в числа. Другими словами, производится аналогово-цифровое преобразование: напряжению – физической величине – ставится в соответствие число.

Например, напряжение равное 1-му микровольту можно закодировать последовательностью из четырнадцати нулей и единиц (бит): 00000000000001, – напряжение равное 2-ум микровольтам – последовательностью 00000000000010 и т.д. Для некоторых цифровых фотоаппаратов длина последовательности может равняться 12-ти битам. Чем длиннее последовательность чисел, тем точнее цифровое изображение может повторить оптическое изображение.

Последовательностью из 14-ти нулей и единиц можно закодировать более 16-ти тысяч состояний сенселя. Точность аналого-цифрового преобразования указывается в спецификации к цифровому фотоаппарату.

Аналого-цифровое преобразование может осуществляться двумя способами. 1) Процессором и вспомогательными элементами электронной схемы фотоаппарата – все расположены на электронной плате (метка 11 на рис. 1). 2) Специальными компонентами, встроенными непосредственно в сенсор.

В первом случае сенсор относится к виду прибора с зарядовой связью (ПЗС, англ. CCD - Charge-Coupled Device), во втором случае к приборам, построенным по КМОП-технологии (аббр. от «комплементарная структура металл-оксид-полупроводник», англ. CMOS). Тип установленного сенсора указывается в спецификации к цифровому фотоаппарату.

Два типа сенсоров обладают существенными отличиями, которые оказывают влияние на техническое качество фотографии, стоимость камеры и определяют особенности изображения движущихся объектов. Поэтому сравнение ПЗС и КМОП-сенсора я приведу отдельно в конце раздела.

Рис. 10. Пример упрощённой числовой таблицы, формируемой в результате работы сенсора: вверху – наглядная форма (числа указаны в десятичной системе исчисления), внизу – форма, «привычная» для цифровой техники (числа указаны в двоичной системе исчисления).

Итогом аналого-цифрового преобразования является специальная таблица (см. рис. 10). В ней указывается расположение сенселя, напряжение на его электродах в виде 12-ти или 14-ти битной последовательности, а также цвет фильтра. Таблица, дополненная информацией о параметрах съёмки и другими данными, может быть либо 1) сохранена в виде файла на карте памяти, либо 2) отправлена на «конвейер» фотоаппарата.

В первом случае файл называют «цифровым негативом» или «цифровым изображением в формате RAW» (от англ. raw – «сырой»). Функцию сохранения RAW-файла на карте памяти можно вручную активировать в меню фотоаппарата. Но она реализована не во всех цифровых камерах: во всех зеркальных, большинстве беззеркальных и некоторых компактных фотоаппаратах.

Строго, RAW-файл не является цифровым изображением. Из данных, содержащихся в RAW-файле, можно получить множество цифровых изображений, подобных оптическому изображению, сформированному объективом на светочувствительном сенсоре. На этапе обработки при наличии соответствующих навыков из RAW-файла может быть получено цифровое изображение, значительно превосходящее по всем критериям технического качества цифровое изображение, создаваемое «конвейером» фотоаппарата. Подробнее о цифровых изображениях и их форматах я расскажу в шестой части «основ».

Во втором случае, когда напряжения на электродах сенселей «обозначены» числами, а из чисел сформирована специальная таблица, на основании её данных процессор фотоаппарата осуществляет интерполяцию. Результатом интерполяции и применения сопутствующих программных алгоритмов, вместе образующих «конвейер», является цифровое изображение, которое может быть отображено на экране фотоаппарата (метка 7 на рис. 1) и сохранено в виде файла на карте памяти.

Резюмирую. Вы нажимаете на кнопку спуска затвора, поднимаются зеркала, открывается затвор. Поток фотонов, сформированный объективом, устремляется на сенсор. Сенсели «насыщаются» фотонами, порождают электрические напряжения. Напряжения фиксируются, чтобы вычислительные компоненты сенсора (в случае с КМОП-сенсором) или электронная схема фотоаппарата могли преобразовать «сетку» напряжений в числовую таблицу. Как только напряжения зафиксированы, сенсели освобождаются от фотонов. Сенсор снова готов «принимать» поток фотонов, то есть участвовать в создании новой фотографии. Процессор строит цифровое изображение, интерполируя числовую таблицу, выводит его на экран фотоаппарата и/или сохраняет на карте памяти. Числовая таблица может быть сохранена в виде RAW-файла на карте памяти, если соответствующая функция реализована в фотоаппарате, и пользователь активировал её.

Отмечу, что пока процессор строит цифровое изображение, светочувствительный сенсор может принимать новые «порции» фотонов: от 20-ти «порций» ежесекундно. Именно так происходит в режиме видеосъёмки или при построении кадра в реальном времени – в режиме Live View (буквально с англ. – «живой взгляд»). Обоими режимами производители современных цифровых фотоаппаратов оснащают подавляющее большинство своих устройств.

В завершение приведу замечание относительно степени «похожести» оптического и цифрового изображения.

Все явления и процессы в окружающем нас мире непрерывны. В цифровом мире любое природное явление имитируется – приближается с какой-либо долей точности. Процессы в цифровом мире дискретны. Сенсоры генерируют дискретное изображение – подобное с некоторой точностью оптическому изображению. Но разные технологии построения светочувствительных сенсоров «приближают» оптическое изображение с разными степенью точности, затратами времени и энергии.

Существуют две технологии производства сенсоров, где для определения цвета каждого элементарного фрагмента итогового цифрового изображения используется информация с трёх сенселей с синим, красным и зелёным фильтрами. При этом сенсели одного «цвета» расположены на отдельном сенсоре (3-ёх сенсорное решение) или отдельном слое сенсора (технология Foveon X3). Первая технология активно применяется в цифровых видеокамерах. Вторая в настоящее время применяется в цифровых фотоаппаратах производства Sigma.

Обе технологии не требуют интерполяции данных, полученных с помощью сенсоров. Каждому пикселю на итоговом цифровом изображении соответствуют сразу три сенселя с различными цветными фильтрами вместо одного (в технологии с применением массивов цветных фильтров). Так как не требуется «приближения»: информации для определения каждого пикселя достаточно, – точность передачи цветов априори выше.

01/05/2014    Просмотров : 50374    Источник: photo-monster.ru    Автор: Марк Лаптенок
Версия для печати

Комментарии: 5

  • Осталось символов: 5000
    Формат JPG Удалить
    Ожидаем загрузку изображений
  • МагомедМГ 8 Августа 2016 - 12:35:00

    Дочитал до конца, пересказать не смог бы)))... Понять понял)))


  • Евгений Аринкин 30 Марта 2016 - 15:53:58

    Очень интересно)))


  • Серега_Мурманск 4 Ноября 2015 - 17:46:44

    Спасибо! Узнал кучу нового


    • Марк Лаптенок 5 Ноября 2015 - 12:52:49

      Я рад!


  • Olga C. 23 Января 2015 - 01:51:33

    Спасибо! Хоть для пользователя камеры и не нужно, но для общего понятия полезно.


Еще уроки из рубрики "Все основы"

Покупка аккумуляторов: что нужно знать?

Доводилось ли вам использовать свою камеру с объективами от стороннего производителя? Предполагаю, что большинство ответит да. Причина этого в том, что на рынке есть много...

Читать дальше
09/03/2020. Основы — Все основы. Перевод: Алексей Шаповал
11 264
1

Правило эквивалентной экспозиции

Фотоаппарат – восхитительный инструмент. Просто поразительно как одним щелчком затвора можно остановить текущий миг и сохранить его на будущее. Принцип работы фотоаппарата...

Читать дальше
29/02/2020. Основы — Все основы. Перевод: Алексей Шаповал
22 413
2

Оцифровка фотографий и негативов

У каждой семьи есть своя история, а у каждой истории есть свои фотографии: старые цветные распечатки, винтажные черно-белые фотокарточки, негативы и пленки.

Читать дальше
17/02/2020. Основы — Все основы. Перевод: Алексей Шаповал
38 108
4

Как развить профессиональный взгляд

Фотография – мощный инструмент визуальной коммуникации. Объектив в какой-то мере можно считать вашим третьим глазом, который позволяет поделиться с миром тем, что видите вы...

Читать дальше
10/02/2020. Основы — Все основы. Перевод: Алексей Шаповал
15 696
0

Как избежать клише в фотографии

Мир современной пейзажной фотографии весьма сложный. Кажется, будто достаточно иметь камеру, несколько объективов, штатив, фильтры, карту и отличную идею в голове, но в реальности все...

Читать дальше
05/09/2019. Основы — Все основы. Перевод: Алексей Шаповал
14 325
1

Как подзаработать фотографу (не профи)

Существует миф, будто фотографы разделяются на две категории – те, для кого это просто хобби и профессионалы, которые зарабатывают деньги. На самом деле многие находятся в...

Читать дальше
12/08/2019. Основы — Все основы. Перевод: Алексей Шаповал
18 460
2

Наверх
Орфографическая ошибка в тексте:
своими руками В этом уроке рассказывается, как сделать складной софтбокс размером 40х40 см, который похож на

Послать сообщение об ошибке администратору? Ваш браузер останется на той же странице.

Ваше сообщение отправлено. Спасибо!

Окно закроется автоматически через 3 секунды